IT编程 > 脚本编程 > Python

python 实现rolling和apply函数的向下取值操作

101891人参与2020-06-23

我就废话不多说了,大家还是直接看代码吧!

import pandas as pd

def get_under_rolling(df,window,user,name):
  df[name] = df[user].iloc[::-1].rolling(window=window).apply(lambda x:x[0]).iloc[::-1]
  return df

if __name__ == '__main__':
  df = pd.dataframe({'a':[1,2,3,4,5],
          'b':[2,3,4,5,6]})
  # 把b列向下取值作为新的c列
  df = get_under_rolling(df, window=3, user='b',name='c')

原始df

新的df

补充知识:python:利用rolling和apply对dataframe进行多列滚动,数据框滚动

看代码~

# 设置一个初始数据框
df1 = [1,2,3,4,5]
df2 = [2,3,4,5,6]
df = pd.dataframe({'a':list(df1),'b':list(df2)})
print(df)
  a b
 0 1 2
 1 2 3
 2 3 4
 3 4 5
 4 5 6

下面是滚动函数

# 多列滚动函数
# handle对滚动的数据框进行处理
def handle(x,df,name,n):
  df = df[name].iloc[x:x+n,:]
  print(df)
  return 1
# group_rolling 进行滚动 
# n:滚动的行数
# df:目标数据框
# name:要滚动的列名
def group_rolling(n,df,name):
  df_roll = pd.dataframe({'a':list(range(len(df)-n+1))})
  df_roll['a'].rolling(window=1).apply(lambda x:handle(int(x[0]),df,name,n),raw=true)

对初始数据框进行滚动

其中:

n=2,name=[‘a',‘b']
group_rolling(n=2,df=df,name=['a','b'])

每次滚动的结果如下:

  a b
0 1 2
1 2 3

  a b
1 2 3
2 3 4

  a b
2 3 4
3 4 5

  a b
3 4 5
4 5 6

以上这篇python 实现rolling和apply函数的向下取值操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持萬仟网。

您对本文有任何疑问!!点此进行留言回复

推荐阅读

猜你喜欢

python 实现rolling和apply函数的向下取值操作

06-23

基于python计算滚动方差(标准差)talib和pd.rolling函数差异详解

06-23

Python实现一个简单的毕业生信息管理系统的示例代码

06-23

python:HDF和CSV存储优劣对比分析

06-23

Python实现查找数据库最接近的数据

06-23

python numpy库np.percentile用法说明

06-23

拓展阅读

大家都在看

Numpy用于数据存储和读取

12-06

python 异常处理 StopIteration 用来作为迭代器的输出停止/next()

07-12

OpenCV 画多边形 — cv.polylines()函数使用

10-06

ROS笔记——在conda的python3.7中使用ROS Kinetic

07-30

使用Keras加载含有自定义层或函数的模型操作

06-18

python 实现rolling和apply函数的向下取值操作

06-23

pycharm 2020 Error: failed to send plot to http://127.0.0.1:63342

07-30

使用Python来开发Markdown脚本扩展的实例分享

05-30

热门评论